A new era in genomic medicine has been brought by the development of CRISPR-Cas technology, which presents hitherto unheard-of possibilities for the treatment of metabolic illnesses. The treatment approaches used in CRISPR/Cas9-mediated gene therapy, emphasize distribution techniques such as viral vectors and their use in preclinical models of metabolic diseases like hypercholesterolemia, glycogen storage diseases, and phenylketonuria. The relevance of high-throughput CRISPR screens for target identification in discovering new genes and pathways associated with metabolic dysfunctions is an important aspect of the discovery of new approaches. With cutting-edge options for genetic correction and cellular regeneration, the combination of CRISPR-Cas technology with stem cell therapy has opened new avenues for the treatment of metabolic illnesses. The integration of stem cell therapy and CRISPR-Cas technology is an important advance in the treatment of metabolic diseases, which are difficult to treat because of their intricate genetic foundations. This chapter addresses the most recent developments in the application of stem cell therapy and CRISPR-Cas systems to treat a variety of metabolic disorders, providing fresh hope for effective and maybe curative therapies. This chapter examines techniques and developments that have been made recently to address a variety of metabolic disorders using CRISPR-Cas systems. Our chapter focuses on the foundational workings of CRISPR-Cas technology and its potential uses in gene editing, gene knockout, and activation/repression-based gene modification.
Keywords: CRISPR-Cas; Gene therapy; Hypercholesterolemia; Metabolic disorders.
Copyright © 2025. Published by Elsevier Inc.