Comparative transcriptomic analysis reveals a potential link between sugar transporters and the diauxic growth of Weissella paramesenteroides YT175 on inulin

Int J Biol Macromol. 2025 Jan 16:298:139928. doi: 10.1016/j.ijbiomac.2025.139928. Online ahead of print.

Abstract

Inulin, a health-promoting dietary fiber, is efficiently metabolized by Weissella paramesenteroides YT175, a beneficial bacterium. The strain demonstrated a diauxic growth pattern within 48 h, reaching an optical density at 600 nm (OD600 nm) of approximately 1.5, accompanied by a significant decrease in pH to around 4.90. Thin-layer chromatography (TLC) analysis reveals an initial preference for inulin oligomers with lower degrees of polymerization (DP). Genomic sequence analysis identified a gene cluster, the pts1BCA operon, associated with inulin metabolism, which includes genes encoding sugar transport proteins, a beta-fructofuranosidase enzyme belonging to the glycoside hydrolase family 32 (GH32), and a transcriptional regulator. Comparative transcriptomic analysis revealed significant upregulation of genes encoding beta-fructofuranosidase, phosphotransferase system (PTS), major facilitator superfamily (MFS), and ATP-binding cassette (ABC) transporters, with qRT-PCR results validating the RNA-Seq data, underscoring their involvement in inulin metabolism. These findings propose a metabolic pathway for the strategic utilization of inulin by YT175, highlighting the synergistic role of its three types of membrane transport proteins in the consumption of inulin oligomers with diverse DPs and its diauxic growth behavior. These insights enhance our understanding of the interaction between probiotics and dietary fibers and pave the way for the development of novel synbiotic foods.

Keywords: Inulin; Sugar transporters; Transcriptomics; Weissella paramesenteroides.