We created the c.1286C>G stop-gain mutation found in a family with primary ovarian insufficiency (POI) at age 30 years. The Eif4enif1 C57/Bl6 transgenic mouse model contained a floxed exon 10-19 cassette with a conditional knock-in cassette containing the c.1286C>G stop-gain mutation in exon 10. The hybrid offspring of CMV-Cre mice with Eif4enif1WT/flx mice were designated Eif4enif1WT/Δfor simplicity. A subset of female heterozygotes (Eif4enif1WT/Δ) had no litters. In those with litters, the final litter was earlier (5.4±2.6 vs. 10.5±0.7 months; p=0.02). Heterozygous breeding pair (Eif4enif1WT/Δ x Eif4enif1WT/Δ) litter size was 60% of WT litter size (3.9±2.0 vs. 6.5±3.0 pups/litter; p<0.001). The genotypes were 35% Eif4enif1WT/flxand 65% Eif4enif1WT/Δ, with no homozygotes. Homozygote embryos did not develop beyond the 4-8 cell stage. The number of follicles in ovaries from Eif4enif1WT/Δ mice was lower starting at the primordial (499±290 vs. 1445±381) and primary follicle stage (1069±346 vs. 1450±193) on day 10 (p<0.05). The preantral follicle number was lower starting on day 21 (213±86 vs. 522±227; p<0.01). Examination of ribosome protected mRNAs (RPR) demonstrated altered mRNA expression. The Eif4enif1 stop-gain mice replicate the POI phenotype in women based on an earlier end to reproduction due to oocyte loss. The unique mouse model provides a platform to study regulation of protein translation across oocyte and embryo development in mammals.
© The Author(s) 2025. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For commercial re-use, please contact [email protected] for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact [email protected]. See the journal About page for additional terms.