Purpose: The solid lipid nanoparticles of transitional metal complexes (POMs) were prepared with natural lipids with the aim of developing a safer therapeutic approach for cancer treatment.
Methods: Natural lipids were used to create solid lipid nanoparticles containing transitional metal complexes (POMs).
Results: The nanoparticles had displayed appreciable entrapment and loading percentage of P5W30. The zeta capacitance was measured to be -32.57±6.44 mV with average particle dimension of 160.5±8.61 nm and polydispersity index (PDI) of around 0.3814±0.096. The effectiveness of P5W30-BW-SLNs in inhibiting the growth of HeLa cells was found to be higher (IC50 = 3.02±2.14 µg/mL) compared to pure P5W30 (IC50 = 7.93±5.08 µg/mL). Further examinations of DNA damage were made through comet test and flow cytometry techniques. The assessment of tumor regression and survival was conducted, and comparison was recorded. The P5W30-BW-SLNs resulted in a 72.91% increase in survival rates and a reduction in tumor burden by 2.967±0.543%. Moreover, the computational findings demonstrate a strong connection with the actual data, providing a plausible explanation for the notable chemopreventive efficacy of POM against HeLa cell lines.
Conclusion: The study's findings might pave the way for a more efficient delivery system in cancer treatment.
Keywords: beeswax; molecular docking; nanoparticle; polyoxometalate.
© 2025 Khan et al.