Seizure prediction based on electroencephalogram (EEG) for people with epilepsy, a common brain disorder worldwide, has great potential for life quality improvement. To alleviate the high degree of heterogeneity among patients, several works have attempted to learn common seizure feature distributions based on the idea of domain adaptation to enhance the generalization ability of the model. However, existing methods ignore the inherent inter-patient discrepancy within the source patients, resulting in disjointed distributions that impede effective domain alignment. To eliminate this effect, we introduce the concept of multi-source domain adaptation (MSDA), considering each source patient as a separate domain. To avoid additional model complexity from MSDA, we propose a continuous domain adaptation approach for seizure prediction based on the convolutional neural network (CNN), which performs sequential training on multiple source domains. To relieve the model catastrophic forgetting during sequential training, we replay similar samples from each source domain, while learning common feature representations based on subdomain alignment. Evaluated on a publicly available epilepsy dataset, our proposed method attains a sensitivity of 85.0% and a false alarm rate (FPR) of 0.224/h. Compared to the prevailing domain adaptation paradigm and existing domain adaptation works in the field, the proposed method can efficiently capture the knowledge of different patients, extract better common seizure representations, and achieve state-of-the-art performance.
Keywords: Catastrophic forgetting; Continuous domain adaptation; Convolutional neural network; Electroencephalogram; Incremental learning; Seizure prediction.
© The Author(s), under exclusive licence to Springer Nature B.V. 2025. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.