Large-scale commercial-grade volatile fatty acids production from sewage sludge and food waste: A holistic environmental assessment

Environ Sci Ecotechnol. 2024 Dec 15:23:100518. doi: 10.1016/j.ese.2024.100518. eCollection 2025 Jan.

Abstract

The valorization of sewage sludge and food waste to produce energy and fertilizers is a well-stablished strategy within the circular economy. Despite the success of numerous laboratory-scale experiments in converting waste into high-value products such as volatile fatty acids (VFAs), large-scale implementation remains limited due to various technical and environmental challenges. Here, we evaluate the environmental performance of a hypothetical large-scale VFAs biorefinery located in Galicia, Spain, which integrates fermentation and purification processes to obtain commercial-grade VFAs based on primary data from pilot plant operations. We identify potential environmental hotspots, assess the influence of different feedstocks, and perform sensitivity analyses on critical factors like transportation distances and pH control methods, using life cycle assessment. Our findings reveal that, on a per-product basis, food waste provides superior environmental performance compared to sewage sludge, which, conversely, performs better when assessed per mass of waste valorized. This suggests that higher process productivity from more suitable wastes leads to lower environmental impacts but must be balanced against increased energy and chemical consumption, as food waste processing requires more electricity for pretreatment and solid-liquid separation. Further analysis reveals that the main operational impacts are chemical-related, primarily due to the use of NaOH for pH adjustment. Additionally, facility location is critical, potentially accounting for up to 99% of operational impacts due to transportation. Overall, our analysis demonstrates that the proposed VFAs biorefinery has a carbon footprint comparable to other bio-based technologies. However, enhancements in VFAs purification processes are necessary to fully replace petrochemical production. These findings highlight the potential of waste valorization into VFAs as a sustainable alternative, emphasizing the importance of process optimization and strategic facility placement.

Keywords: Dark fermentation; Food waste; Life cycle assessment; Sewage sludge; Volatile fatty acids.