Infectious diabetic wounds pose an arduous threat to contemporary healthcare. The combination of refractory biofilms, persistent inflammation, and retarded angiogenesis can procure non-unions and life-threatening complications, calling for advanced therapeutics potent to orchestrate anti-infective effectiveness, benign biocompatibility, pro-reparative immunomodulation, and angiogenic regeneration. Herein, embracing the emergent "living bacterial therapy" paradigm, a designer probiotic-in-hydrogel wound dressing platform is demonstrated. The platform is constructed employing a "macrogel/microgel/biofilm" hierarchical encapsulation strategy, with Lactobacillus casei as the model probiotic. Alginate gels, in both macro and micro forms, along with self-produced probiotic biofilms, served as encapsulating agents. Specifically, live probiotics are enclosed within alginate microspheres, embedded into an alginate bulk matrix, and cultivated to facilitate biofilm self-encasing. This multiscale confinement protected the probiotics and averted their inadvertent escape, while enabling sustained secretion, proper reservation, and localized delivery of therapeutically active probiotic metabolites, such as lactic acid. The resulting biosystem, as validated in vitro/ovo/vivo, elicited well-balanced antibacterial activities and biological compatibility, alongside prominent pro-healing, vasculogenic and anti-inflammatory potencies, thus accelerating the regeneration of infected full-thickness excisional wounds in diabetic mice. Such multiple encapsulation-engineered "all-in-one" probiotic delivery tactic may shed new light on the safe and efficient adoption of live bacteria for treating chronic infectious diseases.
Keywords: antibacterial hydrogels; bacterial infections; infected wound healing; living probiotics; wound dressings.
© 2025 Wiley‐VCH GmbH.