Novel peptidomimetic compounds attenuate hypoxic-ischemic brain injury in neonatal rats

Exp Neurol. 2025 Jan 18:115151. doi: 10.1016/j.expneurol.2025.115151. Online ahead of print.

Abstract

Hypoxic-ischemic (HI) brain injury is a common neurological problem in neonates. The postsynaptic density protein-95 (PSD-95) is an excitatory synaptic scaffolding protein that regulates synaptic function, and represents a potential therapeutic target to attenuate HI brain injury. Syn3 and d-Syn3 are novel high affinity cyclic peptides that bind the PDZ3 domain of PSD-95. We investigated the neuroprotective efficacy of Syn3 and d-Syn3 after exposure to HI in neonatal rodents. Postnatal (P) day-7 rats were treated with Syn3 and d-Syn3 at zero, 24, and 48-h after carotid artery ligation and 90-min of 8 % oxygen. Hemispheric volume atrophy and Iba-1 positive microglia were quantified by cresyl violet and immunohistochemical staining. Treatment with Syn3 and d-Syn3 reduced tissue volume loss by 47.0 % and 41.0 % in the male plus female, and by 42.1 % and 65.0 % in the male groups, respectively. Syn3 reduced tissue loss by 52.3 % in females. D-Syn3 reduced Iba-1 positive microglia/DAPI ratios in the pooled group, males, and females. Syn3 effects were observed in the pooled group and females. Changes in Iba-1 positive microglia/DAPI cellular ratios correlated directly with reduced hemispheric volume loss, suggesting that Syn3 and d-Syn3 provide neuroprotection in part by their effects on Iba-1 positive microglia. The pathogenic cis phosphorylated Thr231 in Tau (cis P-tau) is a marker of neuronal injury. Cis P-tau was induced in cortical cells of the placebo-treated pooled group, males and females after HI, and reduced by treatment with d-Syn3. Therefore, treatment with these peptidomimetic agents exert neuroprotective effects after exposure of neonatal subjects to HI related brain injury.

Keywords: D-Syn3, hypoxic-ischemic brain injury; Neuroprotection; Newborn; Syn3.