Effective referral triaging enhances patient service outcomes, experience and access to care especially for specialized procedures. This study presents the development and implementation of an automated triaging system to predict patients who would benefit from Spinal Cord Stimulation (SCS) procedure for their pain management. The proposed triage system aims to improve the triage process by reducing unnecessary appointments before SCS assessment, ensuring appropriate pain management care. It compares various machine learning techniques for the prediction while addressing the class imbalance and overlap challenges inherent in the data. Both data-level and algorithm-level approaches were explored. Two years of patient data was collected including patient characteristics, diagnosis history, pain symptoms, appointment history, medication history, and concepts from clinical notes extracted using Natural Language Processing. EasyEnsemble with Ada Boosting method, an algorithm-level approach, showed the most promising results. The tenfold validation indicated the average area under curve of 0.82, true positive rate (TPR) of 77.3%, and true negative rate (TNR) of 73.0%. The probability threshold was adjusted to 0.575 to meet practice expectation of 15% or less on false positive rate (FPR). The implementation pipeline for the selected model was designed to be applicable to real clinical settings. The one-year implementation results showed TPR of 64.7% and TNR of 87.2%, which reduced FPR by 12.8% while reduced TPR by 12.6%. The trade-off was acceptable to practice. The proposed triage system demonstrated promising accuracy, leading to the enhancement of scheduling systems, patient care, and the reduction of unnecessary appointments in a pain medicine setting.
Keywords: Imbalanced data; Machine learning; Pain medicine; Referral triage; Spinal Cord Stimulation.
© 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.