Modulation of DAPK1 expression by its alternative splice variant DAPK1-215 in cancer

J Transl Med. 2025 Jan 20;23(1):85. doi: 10.1186/s12967-025-06127-9.

Abstract

Background: Death-Associated Protein Kinase 1 (DAPK1) family members are calcium/calmodulin-regulated serine/threonine kinases implicated in cell death, normal development, and human diseases. However, the regulation of DAPK1 expression in cancer remains unclear.

Methods: We examined the expression and functional impact of a DAPK1 splice variant, DAPK1-215, in multiple cancer cell lines. DAPK1 and DAPK1-215 expression levels were quantified by qRT-PCR and Western blotting. Cell migration, invasion, and proliferation assays were conducted in vitro, and a zebrafish model was employed to evaluate metastatic potential. RNA pull-down and CLIP-seq analyses were performed to identify potential RNA-binding proteins. Finally, clinical liver cancer specimens were analyzed to assess the prognostic relevance of DAPK1-215 and DAPK1 mRNA levels.

Results: DAPK1-215 downregulated DAPK1 expression in liver, kidney, and gastric cancer cells by reducing DAPK1 mRNA stability. DAPK1-215 promoted migratory and invasive capabilities in liver and kidney cancer cells, but inhibited these processes in gastric cancer cells, without affecting cell proliferation. Mechanistically, DEAD-Box Helicase 3 X-Linked (DDX3X) stabilized both DAPK1-215 and DAPK1 mRNAs, suggesting that DAPK1-215 may act by competing for DDX3X binding to modulate DAPK1 mRNA stability. Importantly, high levels of DAPK1-215 correlated inversely with DAPK1 mRNA in liver cancer specimens and predicted poor prognosis, whereas high DAPK1 expression predicted improved patient outcomes.

Conclusions: Our findings unveil DAPK1-215 as a molecular brake on DAPK1 expression, influencing cancer cell migration and invasion in a context-dependent manner. These results highlight the potential of DAPK1-215 as an important regulator of malignant progression and as a prognostic marker in liver cancer.

Keywords: DAPK1-215; Cancer progression; DAPK1; DDX3X; MRNA stability.

MeSH terms

  • Alternative Splicing* / genetics
  • Animals
  • Cell Line, Tumor
  • Cell Movement* / genetics
  • Cell Proliferation* / genetics
  • Death-Associated Protein Kinases* / genetics
  • Death-Associated Protein Kinases* / metabolism
  • Down-Regulation / genetics
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Neoplasm Invasiveness
  • Neoplasms* / genetics
  • Neoplasms* / pathology
  • Prognosis
  • Protein Isoforms / genetics
  • Protein Isoforms / metabolism
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Zebrafish / genetics

Substances

  • Death-Associated Protein Kinases
  • DAPK1 protein, human
  • RNA, Messenger
  • Protein Isoforms