Evaluation of the Accuracy, Surgical Time, and Learning Curve of Freehand, Static, and Dynamic Computer-Assisted Implant Surgery in an In Vitro Study

Clin Oral Implants Res. 2025 Jan 21. doi: 10.1111/clr.14403. Online ahead of print.

Abstract

Objectives: This experimental study compared the accuracy of implant insertion using the free-hand (FH) technique, static computer-aided surgery (S-CAIS), or dynamic computer-assisted surgery (D-CAIS) and to evaluate the correlation of learning curves between surgeons' experience and surgical time.

Materials and methods: Thirty-six models were randomly assigned to three groups (FH, n = 12; S-CAIS, n = 12; D-CAIS, n = 12). Each model was planned to receive four implants in the maxillary anterior and posterior regions. Twelve participants, six experienced surgeons, and six dental students were included in this study. The primary outcome was the deviation between the planned and final implant placement from each group. Secondary outcomes were each technique's learning curve regarding surgical time.

Results: The average deviation at implant platform, apex and gradual deviation with FH technique were 1.31 ± 0.88 mm, 1.75 ± 0.9 mm and 6.67° ± 3.70°, respectively. The average deviation of implant platform, apex and angular in S-CAIS were 0.67 ± 0.32 mm, 1.00 ± 0.39 and 2.66° ± 1.77°, respectively. The average deviation of implant platform, apex and angular in D-CAIS were 1.14 ± 0.70 mm, 1.23 ± 0.58 and 3.20° ± 2.16°, respectively. Significant discrepancies at the implant platform, implant apex, and angular deviation were found between all surgical methods (p < 0.016). Learning curves were evident after multiple implant insertions using both freehand and S-CAIS.

Conclusion: The findings indicate that computer-assisted implant insertion leads to a more precise implant alignment than implants inserted freehand in an experimental set-up.

Keywords: computer‐aided implant surgery; implant accuracy; learning curve; surgeon‐reported outcome; surgical time.