Microvascular blood flow ultrasound imaging with microbubble-based H-Scan technology

Med Biol Eng Comput. 2025 Jan 21. doi: 10.1007/s11517-024-03262-1. Online ahead of print.

Abstract

Ultrasound blood flow imaging plays a crucial role in the diagnosis of cardiovascular and cerebrovascular diseases. Conventional ultrafast ultrasound plane-wave imaging techniques have limited capabilities in microvascular imaging. To enhance the quality of blood flow imaging, this study proposes a microbubble-based H-Scan ultrasound imaging technique. This technique utilizes high-order H-Scan to detect the Rayleigh scattering contributed by blood flow and microbubbles at certain concentrations. The detected results are then processed in the B channel using methods such as clutter filtering based on Casorati matrix singular value decomposition (Casorati-SVD). Compared with the control group without H-Scan, the signal-to-noise ratio (SNR) of the experimental group using the microbubble-based H-Scan ultrasound imaging technique was increased by 38.61% on average and the contrast signal-to-noise ratio (CNR) was increased by 39.5% on average. The improved image quality of microvascular flow imaging was visibly enhanced. This method demonstrates significant advantages in enhancing the sensitivity and accuracy of ultrasound blood flow imaging, indicating considerable potential for clinical applications.

Keywords: Gaussian weighted Hermite polynomials; H-Scan; Microbubbles; Microvascular ultrasound imaging; Signal-to-noise ratio.