Targeting allograft inflammatory factor-1 reprograms kidney macrophages to enhance repair

J Clin Invest. 2025 Jan 21:e185146. doi: 10.1172/JCI185146. Online ahead of print.

Abstract

The role of macrophages remains incompletely understood in kidney injury and repair. Their plasticity offers an opportunity to polarize them towards mediating injury resolution in both native and transplanted kidneys undergoing ischemia and/or rejection. Here, we show that infiltrating kidney macrophages augmented their AIF-1 expression after injury. Aif1 genetic deletion led to macrophage polarization towards a reparative phenotype while halting the development of kidney fibrosis. The enhanced repair was mediated by higher levels of anti-inflammatory and pro-regenerative markers leading to a reduction in cell death and increase in proliferation of kidney tubular epithelial cells following ischemic reperfusion injury. Adoptive transfer of Aif1-/- macrophages to Aif1+/+ mice conferred protection against ischemia reperfusion injury. Conversely, depletion of macrophages reversed the tissue-reparative effects in Aif1-/- mice. We further demonstrated an increased expression of AIF-1 in human kidney biopsies from native kidneys with acute kidney injury or chronic kidney disease, as well as in biopsies from kidney allografts undergoing acute or chronic rejection. We conclude that AIF-1 is a macrophage marker of renal inflammation, and its targeting uncouples macrophage reparative functions from profibrotic functions. Thus, therapies inhibiting AIF-1 when ischemic injury is inevitable have the potential to reduce the global burden of kidney disease.

Keywords: Chronic kidney disease; Fibrosis; Immunology; Macrophages; Nephrology.