Activation of the stimulator of interferon genes (STING) pathway by cytosolic DNA leads to the activation of the transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor κB (NF-κB). Although many viruses produce proteins that inhibit IRF3-dependent antiviral responses, some viruses produce proteins that inhibit STING-induced NF-κB activation without blocking IRF3 activation. Here, we found that STING-activated, NF-κB-dependent, and IRF3-independent innate immunity inhibited the replication of the DNA virus herpes simplex virus type 1 (HSV-1), the RNA virus coxsackievirus A16 (CV-A16), and the retrovirus HIV-1. The HIV-1 nonstructural protein Vpu bound to STING and prevented it from interacting with the upstream NF-κB pathway kinase inhibitor of NF-κB subunit β (IKKβ), thus blocking NF-κB signaling. This function of Vpu was conserved among Vpu proteins from diverse HIV-1 and simian immunodeficiency virus strains and was distinct from its action in disrupting other host antiviral pathways. Furthermore, the ORF3a protein from the coronavirus SARS-CoV-2 also promoted viral replication by interacting with STING and blocking STING-induced activity of NF-κB but not of IRF3. These findings demonstrate that diverse viral proteins have convergently evolved to selectively inhibit NF-κB-mediated innate immunity downstream of STING activation, suggesting that targeting this pathway may represent a promising antiviral strategy.