The development of efficient immobilization support for the enhancement of enzyme activity and recyclability is a highly desirable objective. Single-crystalline ordered macro-microporous ZIF-8 (SOM-ZIF-8), has emerged as a highly effective matrix for enzyme immobilization, however, the inherent hydrophobic nature limits its further advancement. Herein, we have customized the immobilization of the Pseudomonas cepacia lipase (LP) in the modification-channels of SOM-ZIF-8 by functionalizing the inner surface-properties with polyethylene glycol (PEG) (LP@SOM-ZIF-8-PEG), and significant enhancement of the activity and (thermal, solvent and cyclic) stability can be realized. The incorporation of PEG into SOM-ZIF-8 regulates its inner surface charge and hydrophobic properties, thereby enhancing enzyme loading, facilitating enzyme conformational adjustments, and achieving a uniform dispersion of LP in SOM-ZIF-8-PEG. LP@SOM-ZIF-8-PEG not only demonstrates a pronounced elevation in enzyme loading and activity over LP@SOM-ZIF-8 but also shows an enzyme activity that is impressively three times greater than LP@ZIF-8. It can completely resolve the 1-phenylethanol racemate in 60 min, with a conversion close to 50 % and an enantioselectivity of 99.8 %. After nine cycles of reuse, the LP@SOM-ZIF-8-PEG still holds onto 95 % of its initial activity. The excellent catalytic performance and stability of LP@SOM-ZIF-8-PEG, along with the universality of the PEG modification strategy for other enzymes, make this work promising in industrial applications.
Keywords: Kinetic resolution; Lipase immobilization; Metal-organic frameworks; Polyethylene glycol; Surface modification.
Copyright © 2025. Published by Elsevier B.V.