Novel preparation of laponite based theranostic silver nanocomposite for drug delivery, radical scavenging and healing efficiency for wound care management after surgery

Regen Ther. 2024 Dec 30:28:235-245. doi: 10.1016/j.reth.2024.12.004. eCollection 2025 Mar.

Abstract

In this work, laponite (LAP) was used to develop the silver (Ag) based nanocomposite for improved anti-bacterial action and wound healing properties. The amphiphilic co-polymers such as PLGA polymer was embedded with the surface of LAP molecules and polyethyleneimine (PEI) through the interaction of hydrophobic binding and it was formed as LAP/PLA-PEG/PEI formulation through the coupling chemistry. The Ag nanoparticles was loaded into formulation to develop LAP/PLA-PEG/PEI/Ag nanocomposite and characterized by different analytical techniques. The UV-Vis and XRD results report that the nanocomposite has shown Surface Plasmon Resonance (SPR) peak at 415 nm for AgNPs particles and provide the strong intensity peak along with 48 nm particle size, respectively. The HR-TEM image showed that the LAP/PLA-PEG/PEI/Ag nanocomposite has shown crystal lattice with spherical morphology. In addition, the synthesized nanocomposite requested in the swelling along with degradation, radial scavenging activity and drug releasing behaviour by in vitro method. The anti-bacterial analysis results showed that the nanocomposite have greater bacterial inhibition. Moreover, In vitro cell model and In vivo wound healing studies confirmed that nanocomposite have significant biocompatibility and healing properties. Importantly, in vivo histological analyses confirmed the effective wound healing effect of nanocomposite by complete re-epithelialization, formation of new granulation tissue and blood vessels. These observations provide strong evidences to use this novel nanoformulation for wound healing application with anti-microbial action.

Keywords: Characterizations; Laponite; Laponite based nanocomposite; Radial scavenging activity; Wound healing activity.