Marketing plays a vital role in the success of a business, driving customer engagement, brand recognition, and revenue growth. Neuromarketing adds depth to this by employing insights into consumer behavior through brain activity and emotional responses to create more effective marketing strategies. Electroencephalogram (EEG) has typically been utilized by researchers for neuromarketing, whereas Eye Tracking (ET) has remained unexplored. To address this gap, we propose a novel multimodal approach to predict consumer choices by integrating EEG and ET data. Noise from EEG signals is mitigated using a bandpass filter, Artifact Subspace Reconstruction (ASR), and Fast Orthogonal Regression for Classification and Estimation (FORCE). Class imbalance is handled by employing the Synthetic Minority Over-sampling Technique (SMOTE). Handcrafted features, including statistical and wavelet features, and automated features from Convolutional Neural Network and Long Short-Term Memory (CNN-LSTM), have been extracted and concatenated to generate a feature space representation. For ET data, preprocessing involved interpolation, gaze plots, and SMOTE, followed by feature extraction using LeNet-5 and handcrafted features like fixations and saccades. Multimodal feature space representation was generated by performing feature-level fusion for EEG and ET, which was later fed into a meta-learner-based ensemble classifier with three base classifiers, including Random Forest, Extended Gradient Boosting, and Gradient Boosting, and Random Forest as the meta-classifier, to perform classification between buy vs. not buy. The performance of the proposed approach is evaluated using a variety of performance metrics, including accuracy, precision, recall, and F1 score. Our model demonstrated superior performance compared to competitors by achieving 84.01% accuracy in predicting consumer choices and 83% precision in identifying positive consumer preferences.
Keywords: CNN-LSTM; EEG; eye tracking; multimodal; neuromarketing.
Copyright © 2025 Usman, Khalid, Tanveer, Imran and Zubair.