Purpose: This study aimed to investigate the molecular mechanisms associated with chromosome segregation errors caused by intrinsic oxidative stress during in vitro oocyte maturation (IVM) using oocytes from Sod1-deficient (Sod1KO) mice.
Methods: Ovulated or in vitro matured cumulus-cells oocyte complexes (COCs) were collected from wild-type (WT) and Sod1KO mice and evaluated chromosome alignment, chromosome segregation, meiotic progression, and BUBR1 and REC8 protein expression levels.
Results: In 21% O2 IVM, the Sod1KO had significantly higher frequencies of chromosome misalignment and segregation errors compared to the WT, and they also reached Germinal Vesicle Break Down (GVBD) and M I stages peak earlier and showed a shorter M I stage residence time compared to the WT. These changes were associated with a decrease in the recruitment of BUBR1 to kinetochores at M I stage, but there were no differences in the expression of REC8 between the two genotypes. Furthermore, the addition of L-ascorbic acid (AsA) or N-acetyl-L-cysteine (NAC) during IVM reduced the frequency of chromosome segregation errors in Sod1KO oocytes.
Conclusions: Oxidative stress caused by Sod1 deficiency during IVM impairs the spindle assembly checkpoint function due to a decrease in the recruitment of BUBR1 to M I stage kinetochores, leading to abnormalities in meiotic progression and chromosome segregation.
Keywords: BUBR1; chromosome segregation errors; oocyte; spindle assembly checkpoint; superoxide dismutase‐1.
© 2025 The Author(s). Reproductive Medicine and Biology published by John Wiley & Sons Australia, Ltd on behalf of Japan Society for Reproductive Medicine.