Impact of Various Forced Oxidative Stress Factors in Rapid Degradation of mAb: Trastuzumab as a Case Study

Pharm Res. 2025 Jan 23. doi: 10.1007/s11095-025-03816-4. Online ahead of print.

Abstract

Purpose: Therapeutic monoclonal antibodies (mAbs) are prone to degradation via aggregation and fragmentation. In this study, forced degradation of trastuzumab (TmAb) was explored in saline and in-vitro models having H2O2 and exposed to UV light (case study 1), both bleomycin (BML) formulation and ferrous ions (Fe2+) (case study 2), and sodium hypochlorite (NaOCl) (case study 3).

Methods: Size exclusion chromatography, dynamic light scattering, spectroscopic analysis, and fluorescence microscope image processing was carried out for characterizing TmAb degradation.

Results: Saline samples containing TmAb and 0.1% H2O2 incubated at 40ºC for 1 h in the presence of UV light showed increased monomer loss by more than 40% compared to TmAb sample without H2O2 exposed to UV light. Saline containing TmAb having both 0.1-unit BML and 0.25 mM Fe2+ showed increased monomer loss by more than 50% compared to TmAb in saline having only Fe2+ or BML. A higher TmAb degradation was also observed in saline containing 0.01% NaOCl compared to saline without NaOCl. Samples containing aggregates of mAb showed altered protein structure. Degradation of TmAb in saline increased with time, temperature, and concentrations of H2O2, Fe2+, and NaOCl. At different analysis time points, TmAb monomer loss was higher in saline compared to human serum filtrate, an in-vitro model. Aggregate particles (> 2 µm size) of TmAb were also observed in serum containing both Fe2+ and BML.

Conclusion: It can be concluded that rapid TmAb degradation significantly enhanced due to various stress factors, and the aggregates could result in enhanced immunogenic risk to the patients.

Keywords: UV light; aggregation; bleomycin; monoclonal antibody; sodium hypochlorite.