This study presents the characterization of a novel multilayered three-dimensional (3D) polymer exhibiting aggregation-induced emission (AIE) properties when excited at a low wavelength of 280 nm. Utilizing fluorescence spectroscopy, we demonstrate that the polymer displays a marked enhancement in luminescence upon aggregation, a characteristic behavior that distinguishes AIE-active materials from conventional fluorophores. Furthermore, we explore the potential application of this multilayered 3D polymer as a fluorescent probe for the selective detection of specified metal ions. By incorporating chelating functional groups into the polymer matrix, we facilitate specific interactions with target metal ions, leading to significant fluorescence intensity changes that correlate with ion concentration. According to their cyclic voltammetry characteristics, the polymers have potential applications in cutting-edge electrical and optoelectronic systems. Our findings indicate that this multilayered 3D polymer serves as an effective fluorescent sensor and offers tunable optical properties, paving the way for innovative applications in environmental monitoring and biomedical diagnostics. The results underscore the utility of AIE-active polymers in developing advanced materials for sensitive and selective detection of metal ions, contributing to the growing field of smart sensing technologies.
This journal is © The Royal Society of Chemistry.