Injury caused by excess reactive oxygen species (ROS) may lead to susceptibility to bacterial infection and sustained inflammatory response, which are the major factors impeding diabetic wound healing. By utilizing optimal anti-inflammatory, antioxidant and antibacterial biomaterials for multifunctional wound dressings is critical in clinical applications. In this study, a novel electrospun PLGA/MoS2@Pd nanofiber membrane was synthesized by encapsulating antioxidant and near-infrared (NIR) responsive MOS2@Pd nanozymes in PLGA nanofibers to form a multifunctional dressing for diabetic wound repair. With excellent biocompatibility and hemostatic ability, this novel PLGA/MoS2@Pd nanofiber membrane can effectively reduce oxidative stress damage and intracellular inflammatory factors expression in fibroblasts by scavenging ROS. Additionally, the PLGA/MoS2@Pd nanofiber membrane exhibited favorable NIR-mediated photothermal antibacterial activity in vitro, with inhibition rates of 97.14% and 97.07% against Staphylococcus aureus (S.aureus) and Escherichia coli (E.coli), respectively. In a diabetic rat wound infection model, NIR-assisted PLGA/MoS2@Pd nanofiber membrane effectively inhibited bacterial growth in the wound, reduced infection-induced inflammatory response, and promoted tissue epithelialization and collagen deposition, resulting in a wound healing rate of up to 98.5% on Day 14. This study highlighted the construction of a multifunctional nanofiber membrane platform and demonstrated its promising potential as a clinical dressing for diabetic wounds.
Keywords: anti-inflammation; antimicrobial; diabetic wound healing; electrospun nanofiber membranes; photothermal performance.
© The Author(s) 2024. Published by Oxford University Press.