Background/objectives: For healthcare institutions developing a robotic programme, delivering value for patients, clinicians, and payers is key. However, the impact on the surgeon, training pathways, and logistics are often overlooked. We conducted a study on the impact of robotic surgery on surgeons, access to robotic surgical training, and factors associated with developing a successful robotic programme.
Method: In our international mixed-methods study, a customised web-based survey was circulated to gynaecological oncologists. The Wilcoxon rank-sum test and Fisher's exact test, tested the hypothesis of the differences in continuous and categorical variables. Multiple linear regression was used to model the effect of variables on outcomes adjusting for gender, age, and postgraduate experience. Outcomes included situational awareness, surgeon fatigue/stress, and the surgical learning curve. Qualitative data were collected via in-depth semi-structured interviews using an inductive theoretical framework to explore access to surgical training and logistical considerations in the development of a successful robotic programme.
Results: In total, 94%, 45%, and 48% of survey respondents (n = 152) stated that robotic surgery was less physically tiring/mentally tiring/stressful in comparison to laparoscopic surgery. Our data suggest gender differences in the robotics learning curve with men six times more likely to state robotic surgery had negatively impacted their situational awareness in the operating theatre (OR = 6.35, p ≤ 0.001) and 2.5 times more likely to state it had negatively impacted their surgical ability due to lack of haptic feedback in comparison to women (OR = 2.62, p = 0.046). Women were more risk-averse in case selection, but there were no self-reported differences in the intra-operative complication rates between male and female surgeons (OR = 1, p = 0.1). In total, 22/25 robotically trained surgeons interviewed did not follow a structured curriculum of learning. Low and middle income country centres had less access to robotic surgery. The success of robotic programmes was measured by the number of cases performed per annum, with 74% of survey respondents stating that introducing robotics increased the proportion of surgeries performed by minimal access surgery. There was a distinct lack of knowledge on the environmental impact of robotic surgery.
Conclusions: Whilst robotic surgery is considered a landmark innovation in surgery, it must be responsibly implemented through effective training and waste minimisation, which must be a key metric in measuring the success of robotic programmes.
Keywords: green theatres; gynaecological oncology; learning curve; robotic surgery; situational awareness.