Background: Artificial intelligence (AI) has emerged as a transformative technology in healthcare, with its integration into cardiac surgery offering significant advancements in precision, efficiency, and patient outcomes. However, a comprehensive understanding of AI's applications, benefits, challenges, and future directions in cardiac surgery is needed to inform its safe and effective implementation. Methods: A systematic review was conducted following PRISMA guidelines. Literature searches were performed in PubMed, Scopus, Cochrane Library, Google Scholar, and Web of Science, covering publications from January 2000 to November 2024. Studies focusing on AI applications in cardiac surgery, including risk stratification, surgical planning, intraoperative guidance, and postoperative management, were included. Data extraction and quality assessment were conducted using standardized tools, and findings were synthesized narratively. Results: A total of 121 studies were included in this review. AI demonstrated superior predictive capabilities in risk stratification, with machine learning models outperforming traditional scoring systems in mortality and complication prediction. Robotic-assisted systems enhanced surgical precision and minimized trauma, while computer vision and augmented cognition improved intraoperative guidance. Postoperative AI applications showed potential in predicting complications, supporting patient monitoring, and reducing healthcare costs. However, challenges such as data quality, validation, ethical considerations, and integration into clinical workflows remain significant barriers to widespread adoption. Conclusions: AI has the potential to revolutionize cardiac surgery by enhancing decision making, surgical accuracy, and patient outcomes. Addressing limitations related to data quality, bias, validation, and regulatory frameworks is essential for its safe and effective implementation. Future research should focus on interdisciplinary collaboration, robust testing, and the development of ethical and transparent AI systems to ensure equitable and sustainable advancements in cardiac surgery.
Keywords: artificial intelligence; augmented cognition; cardiac surgery; machine learning; postoperative management; risk stratification; robotic-assisted surgery.