An origami-based tactile sensory ring utilizing multilayered conductive paper substrates presents an innovative approach to wearable health applications. By harnessing paper's flexibility and employing origami folding, the sensors integrate structural stability and self-packaging without added encapsulation layers. Knot-shaped designs create loop-based systems that secure conductive paper strips and protect sensing layers. Demonstrating a sensitivity of 3.8 kPa-1 at subtle pressures (0-0.05 kPa), the sensors detect both minimal stimuli and high-pressure inputs. Electrical modeling of various origami configurations identifies designs with optimized performance with a pentagon knot offering higher sensitivity to support high-sensitivity needs. Meanwhile a square knot provides greater precision and quicker recovery, balancing sensitivity and stability for real-time feedback devices. The enhanced elastic modulus from folds remains within human skin's elasticity range, ensuring comfort. Applications include grip strength monitoring and pulse rate detection from the thumb, capturing pulse transit time (PTT), an essential cardiovascular biomarker. This design shows the potential of origami-based tactile sensors in creating versatile, cost-effective wearable health monitoring systems.
Keywords: conductive composite ink; electrical contact resistance; flexible origami tactile sensor; grip strength; origami ring; pulse transit time.