One hundred thirty-four germ line PU.1 variants and the agammaglobulinemic patients carrying them

Blood. 2025 Jan 24:blood.2024026683. doi: 10.1182/blood.2024026683. Online ahead of print.

Abstract

Leukopoiesis is lethally arrested in mice lacking the master transcriptional regulator PU.1. Depending on the animal model, subtotal PU.1 loss either induces acute myeloid leukemia or arrests early B cell and dendritic cell development. Although humans with absolute PU.1 deficiency have not been reported, a small cadre of congenital agammaglobulinemia patients with sporadic, inborn PU.1 haploinsufficiency were recently described. To better estimate the penetrance, clinical complications, immunophenotypic features, and malignancy risks of PU.1-mutated agammaglobulinemia (PU.MA), a collection of 134 novel or rare PU.1 variants from publicly available databases, institutional cohorts, previously published reports, and unsolved agammaglobulinemia cases were functionally analyzed. In total, 25 loss of function (LOF) variants were identified in 33 heterozygous carriers from 21 kindreds across 13 nations. Of subjects harboring LOF PU.1 variants, 22 were agammaglobulinemic, 5 displayed antibody deficiencies, and 6 were unaffected, indicating an estimated disease penetrance of 81.8% with variable expressivity. In a cluster of patients, disease onset was delayed, sometimes into adulthood. All LOF variants conveyed effects via haploinsufficiency, either by destabilizing PU.1, impeding nuclear localization, or directly interfering with transcription. PU.MA patient immunophenotypes consistently demonstrated B-cell, conventional dendritic-cell, and plasmacytoid dendritic-cell deficiencies. Associated infectious and non-infectious symptoms hewed closely to X-linked agammaglobulinemia and not monogenic dendritic cell deficiencies. No carriers of LOF PU.1 variants experienced hematologic malignancies. Collectively, in vitro and clinical data indicate heterozygous LOF PU.1 variants undermine humoral immunity but do not convey strong leukemic risks.