With the rapid advancement of information technology, the data demands in transmission rates, processing speed, and storage capacity have been increasing significantly. However, silicon electro-optic modulators, characterized by their weak electro-optic effect, struggle to balance modulation efficiency and bandwidth. To overcome this limitation, we propose an electro-optic modulator based on an all-fiber micro-ring resonator and a p-Si/n-ITO heterojunction, achieving high modulation efficiency and large bandwidth. ITO is introduced in this design, which exhibits an ε-near-zero (ENZ) effect in the communication band. The real and imaginary parts of the refractive index of ITO undergo significant changes in response to variations in carrier concentration induced by the reverse bias voltage, thereby enabling efficient electro-optic modulation. Additionally, the design of the all-fiber micro-ring eliminates coupling losses associated with spatial optical-waveguide coupling, thereby resolving the high insertion loss of silicon waveguide modulators and the challenges of integrating MZI modulation structures. The results demonstrate that this modulator can achieve significant phase shifts at low voltages, with a modulation efficiency of up to 3.08 nm/V and a bandwidth reaching 82.04 GHz, indicating its potential for high-speed optical chip applications.
Keywords: ITO; all-fiber micro-ring resonator; electro-optic modulator; heterojunction; optical chip.