Anaerobic digestion (AD) is a biological process in which anaerobic microorganisms convert organic matter into methane-rich gas, contributing to the cycling of carbon and other nutrients. Quorum sensing (QS), a microbial communication mechanism, plays a critical role in regulating population-level behaviors within AD systems. This review systematically examines the roles and applications of QS in AD, emphasizing its importance in enhancing process efficiency. The review begins by exploring the pathways and characteristics of QS in key functional microorganisms involved in AD. We analyze the response mechanisms of QS to key environmental variables and their effects on the structure and function of microbe communities and extracellular polymeric substances secretion. Potential applications of QS in engineered AD systems are discussed, with a focus on promoting system startup, improving operational efficiency, and enhancing resistance and stability. The use of exogenous signaling molecules and quorum quenching reagents to optimize AD performance is also evaluated. Additionally, the ecological significance of QS in natural environments, such as seafloor sediments and wetlands, is explored, emphasizing its role in regulating AD-related microorganisms within complex microbial communities. Finally, the review identifies current knowledge gaps and outlines future research directions in AD, including QS database development, QS-engineered bacteria excavation, and advanced analytical methods assistants. This comprehensive review aims to bridge existing gaps in QS-related knowledge in AD and provide fresh perspectives for studying microbial communication and collaboration through QS.
Keywords: Anaerobic digestion; Microbial collaboration; Microbial communication; Quorum sensing; Signaling molecules.
Copyright © 2025 Elsevier Ltd. All rights reserved.