Centromeric effect on the degree of nonrandom disjunction in the female Drosophila melanogaster

Genetics. 1977 May;86(1):121-32. doi: 10.1093/genetics/86.1.121.

Abstract

From crosses of females possessing a heteromorphic X-chromosome bivalent, FR1/+, the shorter crossover products were recovered on the average more frequently than the longer reciprocals as predicted by Novitski's (1951) hypothesis of nonrandom disjunction (NRD). The present study stemmed from an unexpected result of these crosses. Evidence for a centromeric effect on NRD was obtained, suggested by a negative correlation between the degree of NRD, c, and the distance between the region of exchange and the centromere as inferred from SET's (single exchange tetrads). Studies on sex chromosome systems other than FR1 confirmed these results. An analogous centromeric effect on preferential segregation had been clearly demonstrated in maize (Kikudome 1958, 1959; Rhoades and Dempsey 1966). However, prior to the present investigation, no such effect of the centromere on NRD in Drosophila had been described, although reanalysis of part of the data of Novitski (1951) and Novitski and Sandler (1956) suggests some evidence of a seriation of increasing c values extending from the most distal region of the chromosome toward the centromere. A suggestion that the effect in Drosophila may be related in some way to the time required for chiasma terminalization, i.e., those terminalizing earlier (distally located crossovers) permitting more random disjunction of the chromatids from the asymmetric dyad and those terminalizing later, progressively less random, is considered and rejected since in general the expected pattern of c values for the various double exchange tetrads (DET's) is inconsistent with that prediction and provides evidence suggesting the possibility of reversals, in part, of c values obtained for SET's.

MeSH terms

  • Animals
  • Crossing Over, Genetic
  • Drosophila melanogaster / ultrastructure
  • Female
  • Meiosis
  • Mitosis*
  • Sex Chromosomes*