Particles were chemically modified with aldehydes and incubated with rat peritoneal cells for phagocytosis. All dialdehydes and lower monaldehydes tested (methanal, ethanal and propanal) made sheep erythrocytes phagocytosable. Failure of higher monaldehydes to induce phagocytosis of treated erythrocytes was not due to lack of reactivity with red cell membranes. All erythrocytes tested (bird and mammal red cells were used) and rat thymocytes were phagocytosed by rat macrophages after incubation with aldehyde. Treatment of Candida albicans did not induce phagocytosis: this failure was not due to lack of aldehyde binding (as demonstrated with [14C]-methanal) nor to anti-phagocytic properties of the parasite membrane. Sheep erythrocytes were submitted to enzymatic treatment (pronase, trypsin, neuraminidase) or incubated with succinic anhydride (to block free NH2 groups) or iodacetamide (to block free SH groups) before aldehyde treatment: phagocytosis was not decreased, which suggested that aldehydes did not act by altering some definite surface structure of the treated particles. Treatment of erythrocytes with cross-linking compounds such as tetraazotized o-dianisidine (coupling occurs mainly on tyrosine and histidine residues) or l-ethyl(3-dimethyl aminopropyl) carbodiimide (a bivalent reagent binding free COOH groups) did not induce any substantial phagocytosis of erythrocytes. Phagocytosis of aldehyde treated erythrocytes was partly correlated with hydrophobicity of these cells, as measured with a two-phase partition system. It is concluded that aldehyde-mediated phagocytosis of erythrocytes is mainly due to cross-linking of red cell membrane structures, probably involving free OH groups, which must increase local rigidity and thereby modify hydrophobicity of the red cell surface.