A Klebsiella strain of human origin that was resistant to ampicillin, chloramphenicol, kanamycin, neomycin, streptomycin, and tetracycline was found to have all of these resistances associated with a R factor and a satellite molecular species of deoxyribonucleic acid (DNA) with an average buoyant density of 1.710 in cesium chloride gradients. There was no evidence of the existence of DNA with other buoyant densities. The strain bears two separable mutations for chloramphenicol resistance, both of which are associated with the R factor (KR9). Exposure of the Klebsiella strain to acridine derivatives or to ethidium bromide (which was more efficient) resulted in partial losses of resistance accompanied by the disappearance of the satellite DNA peak or shifts in its density. The R factor and its component genes were conjugally transmitted across generic boundaries and maintained in new hosts with different efficiencies. The basis of this difference lies not only in the efficiency of conjugal transfer but also in the stability of the components after transfer. All of the resistance genes and the resistance transfer factor were cotransducible by phage Plkc from Escherichia coli. Partially resistant strains could be reconstituted to full resistance or to a recombined pattern of partial resistance by conjugation with donors having complementary resistance patterns. This recombination serves as an efficient mechanism for rescuing superinfecting genes that are otherwise intracellularly excluded. KR9 is an fi(+) type of R factor which in the natural state does not appear to be as repressed in conjugal transfer as other R factors.