The proliferative response to testosterone in the accessory sex glands (seminal vesicle and coagulating gland) of castrated pale Balb/c mice has been examined by pulse and continuous thymidine-labelling experiments, and by the fraction of labelled mitoses technique. Progressive reductions in cellularity followed castration, and by varying the time elapsing between castration and the initiation of testosterone treatment, it was clear that the size of the response depended upon the number of cells in the tissue, relative to the normal complement. Interpretation of FLM data was difficult in periods where proliferative rates changed rapidly. We have attempted to explain the cell kinetic events by postulating a G0 compartment, form which cells are stimulated to enter the proliferative cycle before subsequently returning to an out of cycle state. It was thought unlikely that substantial changes in cell cycle time occurred. In both the accessory sex glands, the overall form of the continuous thymidine labelling curves showed that most proliferative cells entered DNA synthesis in a shorter time after stimulation at 14 days after castration than they did at 3 days after castration. The data were not consistent with cells moving deeper into G0 with time after castration. In the seminal vesicle almost all epithelial cells were potentially proliferative by 3 days after castration. In the coagulating gland only 30% were potentially proliferative at 3 days, increasing to 85% at 14 days after castration. However, such proportional increases represented much smaller changes in terms of absolute numbers of cells, because of a concomitant decline in cellularity from 3 to 14 days after castration.