BALB/c mice were immunized with purified preparations of hepatitis A virus (HAV) isolated after 21 days of growth in LLC-MK2 cells. The HAV antigen was isolated from CsCl gradients and consisted primarily of the following three proteins as analyzed after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Coomassie blue staining: VP-1 at 33,000 daltons, VP-2 at 29,000 to 30,000 daltons, and VP-3 at 27,000 daltons. The spleen cells isolated from two BALB/c mice, immunized with two inoculations of HAV, were fused with SP 2/0 myeloma cells and grown in hypoxanthine-aminopterin-thymidine medium. Of 270 hybridomas initially screened, 72 were positive for binding HAV by a noncompetitive radioimmunoassay. All 72 were tested for the ability to neutralize the infectivity of HAV in an in vitro cell culture assay that was adapted for microtiter plates and that used detergent-treated virus for improved neutralization sensitivity and newborn cynomolgus monkey kidney cells for rapid growth. Eighteen hybridomas were positive for neutralization; 16 remained stable. Of the 16, 9 were able to compete with labeled polyclonal serum for binding to HAV. The nine competing hybridomas could be separated into two groups which appear to be directed towards two different sites on HAV and could complement each other in the competitive radioimmunoassay against polyclonal sera. Of the original 16 neutralizing hybridomas, 4 were subcloned through two cycles of limit dilutions. All four monoclonal antibodies retained their original neutralizing and competitive properties; three were immunoglobulin G2a, and one was immunoglobulin G1. All four monoclonal antibodies readily precipitate whole 125I-labeled HAV but are not able to recognize the disrupted proteins of the virus (as tested by immune precipitations of heat- and detergent-disrupted virions or Western blot analyses). However, the heterobifunctional cross-linking reagent toluene-2,4-diisocyanate was used to cross-link purified Fab fragments of two different monoclonal antibodies (2D2 and 6A5) to HAV before disruption. This reagent demonstrated a specific reaction of the monoclonal antibodies to the VP-1 of HAV, suggesting this major surface protein contains at least one of the major neutralization sites for HAV.