Determinants of calcium loading at steady state in sarcoplasmic reticulum

Biochim Biophys Acta. 1983 Jan 19;727(2):389-402. doi: 10.1016/0005-2736(83)90424-8.

Abstract

The determinants of steady-state calcium loading by sarcoplasmic reticulum vesicles were evaluated by measuring the contribution of different pathways of calcium flux to the total calcium flux at steady state. The diffusional passive pathway was least significant at all calcium loads studied. Diffusional passive calcium flux was evaluated by a number of methods which gave comparable results and support its designation as passive and diffusional. These methods included (a) flux measurements with the simple pump-leak system which pertains when acetyl phosphate is used to load the vesicles; (b) flux measurements made after quenching the pump with EGTA; (c) flux measurements made after quenching the pump with glucose plus hexokinase; and (d) evaluation of the effect of pump activity on the efflux of mannitol. The calcium efflux not accounted for by the diffusional pathway was assigned to non-diffusional pathways. Efflux through the non-diffusional pathways required ATP, ADP and extravesicular Ca2+. The ADP-dependent, phosphoenzyme-independent pathway described by Beirao and DeMeis (Biochim. Biophys. Acta (1976) 433, 520-530) was not significantly involved in efflux. We propose that the level of calcium loading achieved at steady state is determined by the levels of the intermediates of the calcium pump which are established at this pseudo-equilibrium condition, these levels being determined by the concentrations of intravesicular and extravesicular calcium ([Ca2+]i and [Ca2+]), ATP and ADP. The different levels of calcium loading achieved by skeletal and cardiac sarcoplasmic reticulum are attributed to different nucleotide and calcium kinetics in these two types of sarcoplasmic reticulum and possibly to different intravesicular volumes. Differences in diffusional permeability are not responsible for differences in calcium loading.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Biological Transport, Active
  • Calcium / metabolism*
  • Calcium-Transporting ATPases / metabolism*
  • Kinetics
  • Mathematics
  • Muscles / enzymology
  • Myocardium / enzymology
  • Rabbits
  • Sarcoplasmic Reticulum / enzymology*

Substances

  • Calcium-Transporting ATPases
  • Calcium