Substrate specificity of cyclic nucleotide phosphodiesterase from beef heart and from Dictyostelium discoideum

Eur J Biochem. 1983 Apr 5;131(3):659-66. doi: 10.1111/j.1432-1033.1983.tb07314.x.

Abstract

The substrate specificity of beef heart phosphodiesterase activity and of the phosphodiesterase activity at the cell surface of the cellular slime mold Dictyostelium discoideum has been investigated by measuring the apparent Km and maximal velocity (V) of 24 derivatives of adenosine 3',5'-monophosphate (cAMP). Several analogs have increased Km values, but unaltered V values if compared to cAMP; also the contrary (unaltered Km and reduced V) has been observed, indicating that binding of the substrate to the enzyme and ring opening are two separate steps in the hydrolysis of cAMP. cAMP is bound to the beef heart phosphodiesterase by dipole-induced dipole interactions between the adenine moiety and an aromatic amino acid, and possibly by a hydrogen bond between the enzyme and one of the exocyclic oxygen atoms; a cyclic phosphate ring is not required to obtain binding. cAMP is bound to the slime mold enzyme via a hydrogen bond at the 3'-oxygen atom, and probably via a hydrogen bond with one of the exocyclic oxygen atoms. A cyclic phosphate ring is necessary to obtain binding to the enzyme. A specific interaction (polar or hydrophobic) between the base moiety and the enzyme has not been demonstrated. A negative charge on the phosphate moiety is not required for binding of cAMP to either enzyme. The catalytic reaction in both enzymes is restricted to the phosphorus atom and to the exocyclic oxygen atoms. Substitution of the negatively charged oxygen atom by an uncharged dimethylamino group in axial or equatorial position renders the compound non-hydrolyzable. Substitution of an exocyclic oxygen by a sulphur atom reduces the rate of the catalytic reaction about 100-fold if sulphur is placed in axial position and more than 10000-fold if sulphur is placed in equatorial position. A reaction mechanism for the enzymatic hydrolysis of cAMP is proposed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3',5'-Cyclic-AMP Phosphodiesterases / metabolism*
  • Animals
  • Binding Sites
  • Cattle
  • Chemical Phenomena
  • Chemistry
  • Cyclic AMP / analogs & derivatives*
  • Cyclic AMP / metabolism
  • Dictyostelium / enzymology*
  • Hydrolysis
  • Kinetics
  • Myocardium / enzymology*
  • Substrate Specificity

Substances

  • Cyclic AMP
  • 3',5'-Cyclic-AMP Phosphodiesterases