We have determined the complete nucleotide sequence of two early embryonic beta-globin genes of the BALB/c mouse: beta h0 and beta h1 X beta h1 codes for the embryonic z protein, while the beta h0 gene may be a minor early embryonic beta-globin gene. The general sequence organization of both genes is entirely analogous to other functional globin genes. There is, however, a 220-base pair insertion of unique sequence within the first intron of beta h0 X beta h0 and beta h1 are 96% homologous for 260 base pairs 5' to the AUG initiation codon, and 93% homologous throughout their coding regions. Analysis of the 5'-flanking sequence demonstrates that these genes are more nonadult-like than adult-like. The sequences show evidence for gene conversions among the mouse nonadult beta-globin genes that were limited to individual exons, presumably by the presence of non-homologous introns. We propose that this arrangement has the beneficial evolutionary effect of allowing gene conversion to act independently on regions of the protein with different structural or functional responsibilities. beta h0 and beta h1 are evolutionary homologs to the human fetal and rabbit beta 3 genes, while their manner of expression is similar to rabbit beta 3 and dissimilar to human fetal expression. The evolutionary history of the human beta-globin genes, therefore, includes the recruitment of an embryonic gene to fetal developmental control.