Circular dichroism measurements show that C.C+ base pairs can coexist with A.T base pairs between antiparallel strands of an oligodeoxynucleotide double-helix

Nucleic Acids Res. 1984 Oct 11;12(19):7565-80. doi: 10.1093/nar/12.19.7565.

Abstract

We have studied the coil-to-helix transition of the DNA oligomer d(C4A4T4C4), using circular dichroism measurements to monitor the formation of A.T base pairs within the central self-complementary A4T4 region and the formation of protonated C.C+ base pairs at the ends of the oligomer. We found that both A.T and C.C+ base pairs formed in a coordinated fashion as the temperature and pH were lowered. The CD data of the helix form of the oligomer were consistent with the presence of paired oligomers, but not with hairpin loops. The pKa for formation of C.C+ base pairs between the C4 ends of the oligomer was higher than the pKa for formation of C.C+ base pairs in d(C8), indicating that the formation of C.C+ base pairs in the oligomer was influenced by the presence of a paired A4T4 region. We conclude that A.T and C.C+ base pairs coexist in the self-complex of the oligomer and, therefore, that C.C+ base pairs can form between antiparallel DNA strands.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Base Sequence
  • Circular Dichroism
  • Hydrogen Bonding
  • Nucleic Acid Conformation
  • Oligodeoxyribonucleotides*
  • Oligonucleotides*
  • Structure-Activity Relationship

Substances

  • Oligodeoxyribonucleotides
  • Oligonucleotides