Structure of pestalotan, a highly branched (1----3)-beta-D-glucan elaborated by Pestalotia sp. 815, and the enhancement of its antitumor activity by polyol modification of the side chains

Carbohydr Res. 1984 Jul 1:129:209-27. doi: 10.1016/0008-6215(84)85313-6.

Abstract

Pestalotia sp. 815, a newly isolated fungus, produces extracellularly a highly (1----6)-branched (1----3)-beta-D-glucan in high yield when grown in a D-glucose-containing medium. This extracellular glucan, designated "Pestalotan", has [alpha]25D-0.1 degree (c 0.5, M NaOH) and a molecular weight greater than 2 X 10(6). Chemical and enzymic studies indicated that pestalotan has a very highly branched structure containing a back-bone chain of beta-D-(1----3)-linked D-glucosyl residues, and three out of five D-glucosyl residues are substituted at O-6, mostly with single D-glucosyl groups, and a very few with short beta-(1----6)-linked oligosaccharide units. This D-glucan becomes water-insoluble after isolation from the culture filtrate followed by dehydration, and shows moderate growth-inhibitory activities against mouse-implanted tumors. However, when the D-glucosyl groups of the side chains were modified by periodate oxidation and borohydride reduction, the resulting, still water-insoluble, D-glucan polyol exhibited potent antitumor activities, confirming that the attachment of many polyhydroxy groups to the beta-D-(1----3)-linked D-glucan back-bone gives a remarkable enhancement effect on the antitumor activity of the branched D-glucan. Prolonged treatment of the D-glucan polyol by ultrasonic irradiation afforded a low-molecular-weight D-glucan polyol (SD-pestalotan polyol), without alteration of its chemical structure. The water-soluble, SD-pestalotan polyol, having a molecular weight of 4.7 X 10(5), exhibited remarkable antitumor activities against both allogeneic and syngeneic, mouse-implanted tumors, at small dosages (1-5 mg/kg for 10 days) by intraperitoneal administration. A comparison of values of the molecular weight of SD-pestalotan polyol, estimated by 3-MPa l.c. for the aqueous solution and the dimethyl sulfoxide solution, strongly suggested that the D-glucan polyol must form a triple-chain conformation in aqueous solution.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / isolation & purification*
  • Carcinoma, Ehrlich Tumor / drug therapy
  • Culture Media
  • Drug Evaluation, Preclinical
  • Fungi / growth & development*
  • Glucans / biosynthesis
  • Glucans / isolation & purification*
  • Glucans / toxicity
  • Mice
  • Mice, Inbred C3H
  • Mice, Inbred ICR
  • Sarcoma 180 / drug therapy

Substances

  • Antineoplastic Agents
  • Culture Media
  • Glucans
  • pestalotan