We report the formation of complexes of the single-stranded DNA binding protein encoded by gene 5 of fd virus, with natural double-stranded RNAs. In the first direct visualization of a complex of the fd gene 5 protein with a double-stranded nucleic acid, we show by electron microscopy that the double-stranded RNA complex has a structure which is distinct from that of complexes with single-stranded DNA and is consistent with uniform coating of the exterior of the double-stranded RNA helix by the protein. Circular dichroism spectral data demonstrate that the RNA double helix in the complex is undisrupted, and that perturbation of the 228-nm circular dichroism assigned to protein tyrosines can occur in the absence of intercalation of nucleotide bases with protein aromatic residues. Our findings emphasize the potential importance of interaction with the sugar-phosphate polynucleotide backbone in binding of the fd gene 5 protein to nucleic acids.