Hyperthermic killing and hyperthermic radiosensitization in Chinese hamster ovary cells: effects of pH and thermal tolerance

Radiat Res. 1984 Jan;97(1):108-31.

Abstract

To quantitatively relate heat killing and heat radiosensitization, asynchronous or G1 Chinese hamster ovary (CHO) cells at pH 7.1 or 6.75 were heated and/or X-irradiated 10 min later. Since no progression of G1 cells into S phase occurred during the heat and radiation treatments, cell cycle artifacts were minimized. However, results obtained for asynchronous and G1 cells were similar. Hyperthermic radiosensitization was expressed as the thermal enhancement factor (TEF), defined as the ratio of the D0 of the radiation survival curve to that of the D0 of the radiation survival curve for heat plus radiation. The TEF increased continuously with increased heat killing at 45.5 degrees C, and for a given amount of heat killing, the amount of heat radiosensitization was the same for both pH's. When cells were heated chronically at 42.4 degrees C at pH 7.4, the TEF increased initially to 2.0-2.5 and then returned to near 1.0 during continued heating as thermal tolerance developed for both heat killing and heat radiosensitization. However, the shoulder (Dq) of the radiation survival curve for heat plus radiation did not manifest thermal tolerance; i.e., it decreased continuously with increased heat killing, independent of temperature, pH, or the development of thermotolerance. These results suggest that heat killing and heat radiosensitization have a target(s) in common (TEF results), along with either a different target(s) or a difference in the manifestation of heat damage (Dq results). For clinical considerations, the interaction between heat and radiation was expressed as (1) the thermal enhancement ratio (TER), which is the dose of X rays alone divided by the dose of X rays combined with heat to obtain an isosurvival, e.g., 10(-4), and (2) the thermal gain factor (TGF), the ratio of the TER at pH 6.75 to the TER at pH 7.4. Since low pH reduced the rate of development of thermal tolerance during heating at low temperatures, low pH enhanced heat killing more at 42-42.5 degrees C than at 45.5 degrees C where thermal tolerance did not develop. Therefore, the increase in the TGF after chronic heating at 42-42.5 degrees C was greater than after acute heating at 45.5 degrees C, due primarily to the increase in heat killing causing an even greater increase in heat radiosensitization. These findings agree with animal experiments suggesting that in the clinic, a therapeutic gain for tumor cells at low pH may be greater for temperatures of 42-42.5 degrees C than of 45.5 degrees C.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Cycle / radiation effects
  • Cell Survival / radiation effects
  • Cells, Cultured
  • Cricetinae
  • Cricetulus
  • Female
  • Hot Temperature / adverse effects
  • Hydrogen-Ion Concentration
  • Hyperthermia, Induced*
  • Ovary / radiation effects*
  • Radiation Tolerance*
  • Thermal Conductivity