Accurate dosimetry for chemical mutagens is extremely difficult, and precise manipulation of the frequency of a particular lesion is ordinarily impossible. With 8-MOP plus UVA, however, both are possible because 8-MOP, when photoactivated by one photon of UVA, forms monoadducts whilst crosslinks are formed only if a second photon of light photoactivates the monoadducts. If 8-MOP molecules that are unreacted after a UVA exposure are removed from cells by washing, the effect of a subsequent UVA irradiation can be attributed only to the conversion of monoadducts to DNA interstrand crosslinks. Using this experimental procedure and L5178Y mouse lymphoma cells, we have shown that DNA interstrand crosslinks are at least 10-fold more effective at causing both sister-chromatid exchanges and chromosomal aberrations than are monoadducts. In contrast, crosslinks are no more effective than monoadducts in mutation induction. These experiments identify directly for the first time that a particular chemically induced lesion, DNA interstrand crosslinks, can, like thymine dimers, cause chromosomal aberrations and sister-chromatid exchanges. The results also show that sister-chromatid exchanges can be induced independently of mutations.