The effect of different psychotropic drugs on the rate of DOPA accumulation after administration of a decarboxylase inhibitor (NSD 1015) was compared in the substantia nigra (SN) and caudate nucleus (CN) by a new radioenzymatic method. Inhibition of monoamine oxidase with pargyline or stimulation of dopamine (DA) receptors with apomorphine, N-n-propylnorapomorphine or D-amphetamine reduced DOPA formation in the CN and SN to the same extent. Vice versa, both inhibition of DA receptors with haloperidol or (-)sulpiride and depletion of DA concentration with reserpine enhanced DOPA formation to a greater extent in the CN than in the SN. Apomorphine antagonized not only the effect of haloperidol and (-)sulpiride, but also, and even more effectively, that of reserpine. The results indicate that DA synthesis in the SN is controlled by both end-product inhibition and DA receptor-mediated mechanisms.