We examined the structure of the frog virus 3 (FV 3) genome by using electron microscopic and biochemical techniques. The linear FV 3 DNA molecules (Mr approximately 100 x 10(6) formed circles when partially degraded with bacteriophage lambda 5'-exonuclease and annealed, but not when the annealing was done without prior exonuclease digestion. The results suggest that the DNA molecules contain direct terminal repeats. The repeated region composed about 4% of the genome. Complete denaturation of native FV 3 DNA molecules followed by renaturation produced duplex circles each bearing two single-stranded tails at different points along the circumference. The tails presumably represent the terminal repeats. The formation of duplex circles suggests that the FV 3 genome is circularly permuted. This is further borne out by (i) failure to identify a specific restriction endonuclease fragment containing the label when the molecular ends were radiolabeled by using the polynucleotide kinase procedure, and (ii) similarity in the restriction patterns of virion DNA and large concatemeric replicating viral DNA as revealed by endonucleolytic cleavage of both DNAs with HindIII. From the above data, we conclude that the FV3 genome is both circularly permuted and terminally redundant--unique features for an animal virus.