Eight procarcinogens including three nitrosamines, three polycyclic hydrocarbons, and two aromatic amines were tested for mutagenic potential at the thymidine kinase (TK) locus in L5178Y mouse lymphoma cells co-cultivated with viable hamster hepatocytes. All eight chemicals produced substantial mutagenic activity as indicated by increased trifluorothymidine resistance in L5178Y cells treated in the presence of hepatocytes. Mutagenic responses to benzo[alpha]pyrene, 3-methylcholanthrene, N-nitrosodiethylamine, and N-nitrosodipropylamine first increased, then plateaued within the range of mutagen concentrations tested, while consistent dose-dependent increases in mutant frequencies were observed following 2-aminoanthracene, 2-aminofluorene, or N-nitrosodimethylamine treatments. The relatively flat portions of the mutant frequency curves for benzo[alpha]pyrene and 3-methylcholanthrene coincided with maximum chemical solubility as obvious from visible or microscopically detectable precipitate. These hamster cells readily facilitated the metabolism of 1,2-benzanthracene to a detectable mutagen and were especially competent in the activation of the two aromatic amines. Thus, cultured hamster hepatocytes can activate a variety of chemical carcinogens including polycyclic hydrocarbons to mutagens in a whole cell-mediated in vitro assay using L5178Y/TK+/- cells as the target organism.