The optic tectum of the goldfish Carassius auratus is a rich source of alpha-bungarotoxin (alpha-Btx) binding protein. In order to determine whether some fraction of these receptors is present at retinotectal synapses, we have compared the histological distribution of receptors revealed by the use of [125I]alpha-Btx radioautography to the distribution of optic nerve terminals revealed by the use of cobalt and horseradish peroxidase (HRP) techniques. The majority of alpha-Btx binding is concentrated in those tectal layers containing primary retinotectal synapses. The same layers contain high concentrations of acetylcholinesterase (AChE), revealed histochemically. Following enucleation of one eye, there is a loss of alpha-Btx binding in the contralateral tectum, observed both by radioautography and by a quantitative binding assay of alpha-Btx binding. Approximately 40% of the alpha-Btx binding sites are lost within two weeks following enucleation. By contrast, no significant change in AChE activity could be demonstrated up to 6 months following enucleation. These results are discussed in light of recent studies which show that the alpha-Btx binding protein and the nicotinic acetylcholine receptor are probably identical in goldfish tectum. We conclude that the 3 main classes of retinal ganglion cells projecting to the goldfish tectum are nicotinic cholinergic and that little or no postdenervation hypersensitivity due to receptor proliferation occurs in tectal neurons following denervation of the retinal input.