Platelet-derived growth factor (PDGF) is a key mitogen for hepatic stellate cells (HSC) and has been shown to be implicated in liver tissue repair and fibrogenesis. In this study the relationship between PDGF-induced intracellular Ca2+ concentration ([Ca2+]i) increase and mitogenesis in cultured human HSC was evaluated. In high-density cell cultures (80-90% subconfluence), PDGF induced a significant increase in [Ca2+]i, characterized by a short-lasting peak phase, which was followed by a long-lasting plateau phase. The plateau phase was abolished in the absence of extracellular Ca2+. However, in low-density cell cultures (30-40% subconfluence), the plateau phase was absent or markedly less pronounced. In parallel sets of experiments, PDGF was significantly less effective in inducing mitogenesis in low-density cell cultures than in high-density cell cultures and was totally ineffective in the absence of extracellular Ca2+. These results suggest that 1) spatial and time dynamics of PDGF-induced [Ca2+]i increase are dependent on cell density and 2) PDGF-induced mitogenesis requires extracellular Ca2+ influx.