Fabry disease, an X-linked inborn error of glycosphingolipid catabolism, results from mutations in the alpha-galactosidase A (alpha-Gal A) gene at Xq22.1. To determine the nature and frequency of the molecular lesions causing the classical and milder-variant Fabry phenotypes, and for precise carrier detection in Fabry families, the alpha-Gal A transcripts or genomic sequences from unrelated Fabry hemizygotes were analyzed. In patients with the classical phenotype, 18 new mutations were identified: N34S, C56G, W162R, R227Q, R227X, D264V, D266V, S297F, D313Y, G328A, W340X, E398X, IVS2+2, IVS5 delta-2,3, 773 delta 2, 954 delta 5, 1016 delta 11, and 1123 delta 53. Unrelated asymptomatic or mildly affected patients with symptoms confined to the heart had a missense mutation, N215S, that expressed residual enzymatic activity. Related, moderately affected patients with late-onset cardiac and pulmonary manifestations had a small deletion, 1208 delta 3, that predicted the in-frame deletion of arginine 404 near the terminus of the 429 residue enzyme polypeptide. In addition, five small gene rearrangements involving exonic sequences were identified in unrelated classically affected patients. Two small deletions and one small duplication had short direct repeats at their respective breakpoint junctions and presumably resulted from slipped mispairing. A deletion occurred at a potential polymerase alpha arrest site, while the breakpoints of another deletion occurred at an inverted tetranucleotide repeat. Screening of unrelated Fabry patients with allele-specific oligonucleotides for seven mutations revealed that these were private, with the notable exception of N215S, R227Q, and R227X, which were each found in several unrelated families from different ethnic backgrounds. The CpG dinucleotide at codon 227 was the most common site of mutation, having been altered in 5% of the 148 unrelated Fabry alleles. These studies revealed that most alpha-Gal A lesions were private, that codon 227 was a mutational hot spot, and that certain mutations predicted a milder disease phenotype.