Immunoelectron microscopical results have shown that the Z and M bands of the sarcomere are interconnected by the long titin molecules. Here we have characterized by monoclonal antibodies, cDNA cloning and immunoelectron microscopy the two titin-associated proteins (190 and 165 kDa proteins), which seem responsible for the formation of a head structure on one end of the 0.9 micron long titin string. The human 165 kDa (1465 residues) and 190 kDa (1451 residues) proteins have unique N-terminal domains some 110 residues in length. Both proteins show 12 repeat domains with strong homology to either fibronectin type III (motif I) or immunoglobulin C2 (motif II) domains, which are arranged in the order II-II-I-I-I-I-I-II-II-II-II-II. Over these repeat domains the two proteins share 50% sequence identity (70% similarity). Epitopes situated in the C-terminal 138 or in the preceding 206 residues of the 165 kDa protein locate in immunoelectron microscopy to stripes situated 18 or 15 nm from the center of the M band. An epitope situated 277 to 129 residues prior to the C-terminus of the 190 kDa protein (i.e. repeats 10 and 11) locates to the center of the M band. Thus the head structure of the titin molecule extends into the center of the M band. Microsequence data on peptides from the titin-associated bovine 165 kDa protein and from conventionally purified bovine M-protein argue together with the reactivity of the antibodies that 165 kDa protein and M-protein are identical. The integrating structure of the sarcomere, which is based on titin and its side-on (C-protein and 86 kDa protein) or end-on (190 kDa protein and 165 kDa protein) associated proteins arises from muscle-specific members of the superfamily of immunoglobulin-like proteins.