Transcription of the human tumor necrosis factor alpha (TNF-alpha) gene is one of the earliest events that occurs after stimulation of B or T cells via their antigen receptors. Antibody directed at surface immunoglobulin (anti-Ig) on B cells has previously been shown to induce a rapid burst of TNF-alpha gene transcription, which can be blocked by the immunosuppressants cyclosporin A (CsA) and FK506. Here, TNF-alpha gene transcription is shown also to be highly and rapidly induced in human B cells after stimulation via the CD40 and interleukin 4 pathways, which similarly is inhibited by CsA and a panel of CsA or FK506 analogues that block calcineurin phosphatase activity. Endogenous TNF-alpha produced after stimulation was involved in B-cell proliferation since anti-TNF-alpha monoclonal antibody inhibited both anti-Ig- and anti-CD40-induced B-cell proliferative responses. Moreover, addition of TNF-alpha during stimulation resulted in augmentation of B-cell proliferation, which was also inhibited by anti-TNF-alpha monoclonal antibody. Although lymphotoxin alpha (LT-alpha) mRNA is induced by both pathways, it is not blocked by CsA, whereas LT-beta mRNA is constitutively expressed in B cells. Thus, TNF-alpha is a necessary autocrine growth factor for human B cells stimulated via two independent CsA-sensitive pathways and plays a role similar to that of interleukin 2 in T-cell proliferation. The autocrine nature of TNF-alpha in activated B cells implies a potential role for this cytokine in infection-related polyclonal B-cell expansion and in B-cell malignancies.