The aim of the present study was to determine the number of cone classes in the Xenopus retina. We examined the dimensions and staining properties of cones, utilizing two monoclonal antibodies, COS-1 and OS-2, developed by Szel and Rohlich (1985). Living cones also were reacted with the plant lectins peanut agglutinin (PNA) and wheat germ agglutinin (WGA) and with a fluorescent stilbene dye, DIDS, which binds selectively to red-sensitive cones (Kleinschmidt, 1991; Kleinschmidt & Harosi, 1992a,b). Three cone populations were distinguished based on differences in size and staining properties. Eighty-eight percent of all cones were stained strongly by COS-1, PNA, and DIDS, but weakly by OS-2. The group of cones stained by COS-1 had the largest mean dimensions of outer segment length, width, and oil droplet diameter. COS-1 negative cones were divisible into two groups: a subclass of miniature cones (approximately 4% total cones) was stained strongly by OS-2, PNA, and DIDS. The balance, constituting approximately 9% total cones, were of intermediate size, were not stained by PNA and reacted weakly to OS-2 and DIDS. WGA stained all cones. Large, COS-1+ cones appear to be red-sensitive and belong to the class of anion-tunable cone pigments. We suggest that the intermediate size, COS-1 negative cones are blue-sensitive based on the finding that blue-sensitive chromatic horizontal cells connect to them preferentially (Witkovsky et al., work in progress).(ABSTRACT TRUNCATED AT 250 WORDS)