Enhancement of human hematopoiesis by mast cell growth factor in human-sheep chimeras created by the in utero transplantation of human fetal hematopoietic cells

Exp Hematol. 1995 Mar;23(3):252-7.

Abstract

We have previously described a unique model of long-term, multilineage, human hematopoietic chimerism in sheep created by the in utero transplantation of human hematopoietic stem cells (HSC) into pre-immune fetal lambs. In this study, we examined the effect of chronic administration of recombinant human mast cell growth factor (rhMGF) on 1) human cell engraftment in pre-immune sheep and 2) human cell expression in human-sheep chimeras at 2-years posttransplant. rhMGF (25 micrograms/kg) or saline was administered in utero via chronic intraperitoneal (IP) catheters to three separate sets of twin fetuses on alternate days for 10 doses following transplantation of human HSC. Flow-cytometric and karyotype analyses of peripheral blood from two sets of twins at 45-days posttransplant and of peripheral blood from the remaining set of twins at birth revealed a significant increase in percentages of donor (human) progenitors and cells in rhMGF-treated lambs. rhMGF (60 micrograms/kg/day) was also administered by IP injection to two, 2 year-old, human-sheep chimeras for 18 consecutive days. Flow-cytometric analysis of peripheral blood and bone marrow revealed a six- to seven-fold increase in human cell expression. The effect on early human progenitors (i.e., colony-forming unit-mix [CFU-Mix], CFU granulocyte/macrophage [CFU-GM], and burst-forming unit-erythroid [BFU-E]) was determined by karyotype analysis of individual colonies grown under conditions favoring human cell growth. A three- to five-fold increase in human CFU-Mix and BFU-E occurred with a minimal increase in CFU-GM. This in vivo study supports in vitro data suggesting that MGF is a powerful regulator of human hematopoiesis and preferentially stimulates early hematopoietic progenitors. It also supports the potential value of the human-sheep model for the in vivo study of normal and abnormal human hematopoiesis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Differentiation / drug effects
  • Cell Transplantation
  • Embryonic and Fetal Development
  • Female
  • Hematopoiesis*
  • Hematopoietic Cell Growth Factors / pharmacology*
  • Hematopoietic Stem Cells / drug effects*
  • Humans
  • Pregnancy
  • Sheep / embryology
  • Stem Cell Factor
  • Uterus / cytology

Substances

  • Hematopoietic Cell Growth Factors
  • Stem Cell Factor